CATEGORY THEORY Dr. Paul L. Bailey

Homework 5 Solutions Friday, September 27, 2019

Problem 2. Suppose that a has order 15. Find all left cosets of $\langle a^5 \rangle$ in $\langle a \rangle$.

Solution. We list them in a table. Let $G = \langle a \rangle$ and $H = \langle a^5 \rangle$. Note that a^5 has order three, so we expect $[G:H] = \frac{|G|}{|H|} = \frac{15}{3} = 5$ cosets.

a^4H	a^4, a^9, a^{14}
a^3H	a^3, a^8, a^{13}
a^2H	a^2, a^7, a^{12}
aH	a, a^{6}, a^{11}
Н	$1, a^5, a^{10}$

Problem 3. Let a and b be nonidentity elements of different orders in a group G of order 155. Prove that the only subgroup of G that contains a and b is G itself.

Solution. Let $H = \langle a, b \rangle$; it suffices to show that $|H| \ge 155$, from which it would follow that H = G. The prime factorization of 155 is $155 = 5 \cdot 31$. Since a and b have different orders, without loss of generality, we may assume that $\operatorname{ord}(a) > \operatorname{ord}(b)$.

If ord(a) = 155, we see that |H| = 155, so H = G.

Otherwise, $\operatorname{ord}(a) = 31$ and $\operatorname{ord}(b) = 5$. By LaGrange's Theorem, $31 \mid |H|$ and $5 \mid |H|$, so $155 = \operatorname{lcm}(31,5) \mid |H|$, whence $|H| \ge 155$.

Problem 4. Let G be a group such that |G| = pq, where $p, q \in \mathbb{Z}$ are positive primes. Show that every proper subgroup of G is cyclic.

Solution. Every group of prime order is cyclic. To see this, pick any nonidentity element g from a group of order p, where p is prime. The order of g divides p and is greater than 1, so it must be p. Thus g generates the whole group.

Let *H* be a proper subgroup of *G*. We have |H| < pq and |H| | pq; since *p* and *q* are prime, either |H| = 1, in which case *H* is trivial and therefore cyclic (generated by 1), or the order of *H* is either *p* or *q*, so *H* is cyclic.

Problem 5. Let $\phi: G \to H$ and $\psi: H \to K$ be group homomorphisms. Show that $\psi \circ \phi: G \to K$ is a group homomorphism.

Solution. Let $g_1, g_2 \in G$. Then

$(\psi \circ \phi)(g_1g_2) = \psi(\phi(g_1g_2))$	by definition of composition
$=\psi(\phi(g_1)\phi(g_2))$	since ϕ is a homomorphism
$=\psi(\phi(g_1))\psi(\phi(g_2))$	since ψ is a homomorphism
$= (\psi \circ \phi)(g_1)(\psi \circ \phi)(g)2$	by definition of composition.